Bài 11. Phân tích một số ra thừa số nguyên tố

CHƯƠNG I. SỐ TỰ NHIÊN

1. Cách tìm một ước nguyên tố của một số

Ta tìm một ước nguyên tố của số tự nhiên n lớn hơn 1, như sau:
Lần lượt thực hiện phép chia n cho các số nguyên tố theo thứ tự tăng dần 2, 3, 5, 7, 11, 13, ...

Khi đó, phép chia hết đầu tiên cho ta số chia là một ước nguyên tố của n.

Ví dụ

Tìm một ước nguyên tố của 187.

Giải

Số 187 không chia hết cho các số nguyên tố 2, 3, 5, 7.

187 : 11 = 17.

Ta có 187 = 11.17. Vậy 11 là một ước nguyên tố của 187.

2. Phân tích một số ra thừa số nguyên tố

Phân tích một số tự nhiên lớn hơn 1 ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố.

Ví dụ

Phân tích số 40 ra thừa số nguyên tố bằng cách viết "rẽ nhánh" và theo "cột dọc".

Giải

• Phân tích số 40 ra thừa số nguyên tố bằng cách viết "rẽ nhánh"

5 40 4 10 2 2 2

• Phân tích số 40 ra thừa số nguyên tố bằng cách viết theo "cột dọc"

40   2
20   2
10   2
5   5
1    

Vậy 40 = 2.2.2.5 = 23.5.

Nhận xét: dù phân tích bằng cách nào thì cuối cùng ta cũng được cùng một kết quả.

Chú ý: Để dễ xem kết quả phân tích, ta thường viết các thừa số nguyên tố theo thứ tự tăng dần, các thừa số bằng nhau được viết gọn lại dạng một lũy thừa.


Xem thêm các bài học khác :

CHƯƠNG I. SỐ TỰ NHIÊN

Bài 1. Tập hợp
Bài 2. Tập hợp các số tự nhiên
Bài 3. Phép cộng, phép trừ các số tự nhiên
Bài 4. Phép nhân, phép chia các số tự nhiên
Bài 5. Phép tính lũy thừa với số mũ tự nhiên
Bài 6. Thứ tự thực hiện các phép tính
Bài 7. Quan hệ chia hết. Tính chất chia hết
Bài 8. Dấu hiệu chia hết cho 2, cho 5
Bài 9. Dấu hiệu chia hết cho 3, cho 9
Bài 10. Số nguyên tố. Hợp số
Bài 11. Phân tích một số ra thừa số nguyên tố
Bài 12. Ước chung và ước chung lớn nhất
Bài 13. Bội chung và bội chung nhỏ nhất
Ôn tập chương I