Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
a) 2x – 3y + 1 ≤ 0; b) x – 3y + 1 ≥ 0; c) y – 5 > 0; d) x – y2 + 1 > 0.
Giải
Các bất phương trình a), b), c) là các bất phương trình bậc nhất hai ẩn.
Bất phương trình d) không phải là bất phương trình bậc nhất hai ẩn vì có chứa y2.
Chú ý: bất phương trình y – 5 > 0 có a = 0, b = 1 và c = -5.
Cặp số nào sau đây là nghiệm của bất phương trình 4x – 7y – 28 ≥ 0.
a) (9 ; 1); b) (2 ; 6); c) (0 ; -4).
Giải
a) 4.9 – 7.1 – 28 = 1 > 0 nên (9 ; 1) là nghiệm của bất phương trình 4x – 7y – 28 ≥ 0.
b) 4.2 – 7.6 – 28 = -62 < 0 nên (2 ; 6) không phải là nghiệm của bất phương trình 4x – 7y – 28 ≥ 0.
c) 4.0 – 7.(-4) – 28 = 0 nên (0 ; – 4) là nghiệm của bất phương trình 4x – 7y – 28 ≥ 0.
Trong mặt phẳng tọa độ Oxy, tập hợp các điểm (x0 ; y0) sao cho ax0 + b0 + c < 0 được gọi là miền nghiệm của bất phương trình
ax + by + c < 0.
Ta biểu diễn miền nghiệm của bất phương trình ax + by + c < 0 (1) như sau:
Bước 1. Trên mặt phẳng Oxy, vẽ đường thẳng ∆: ax + by + c = 0.
Bước 2. Lấy một điểm M(x0 ; y0) ∉ ∆. Tính ax0 + by0 + c.
Bước 3. Kết luận
• Nếu ax0 + by0 + c < 0 thì miền nghiệm của bất phương trình (1) là nửa mặt phẳng (không kể bờ ∆) chứa M.
• Nếu ax0 + by0 + c > 0 thì miền nghiệm của bất phương trình (1) là nửa mặt phẳng (không kể bờ ∆) không chứa M.
Chú ý: Đối với bất phương trình dạng ax + by + c ≤ 0 (hoặc ax + by + c ≥ 0) thì miền nghiệm kể cả bờ ∆.
Biểu diễn miền nghiệm của bất phương trình x – y – 2 ≥ 0.
Giải
Vẽ đường thẳng ∆ : x – y – 2 = 0 đi qua hai điểm A(0 ; -2); B(2 ; 0).
Xét O(0 ; 0), Ta thấy 0 – 0 – 2 < 0 nên không phải là nghiệm của x – y – 2 ≥ 0.
Vậy miền nghiệm của x – y – 2 ≥ 0 là nửa mặt phẳng kể cả bờ ∆, không chứa điểm O (miền được tô màu trong Hình).
Xem thêm các bài học khác :